Mid Pleistocene Transition Impact
Suborbital Ballistic Emplacement

Correlating Distal, Medial and Proximal Ejecta Transport/Emplacement From Oblique Cosmic Impact On North American Continental Ice Sheet At MIS20 (~786 ka) Via Suborbital Analysis (SA)


Several elements of the 786 ka Australasian (AA) tektite imprint bear close scrutiny in order to locate the parent impact site or structure. The unique Carolina bays unit geologic formation is indicated as a large “medial” ejecta blanket from a large cosmic impact during a period containing 786 ka. Coincidence? Kg-scale sub-spherical hollow splash form AA tektites implies prolonged atmospheric blow out-scale momentum current with a core of sub-parallel or divergent flow volume having essentially zero turbulence. This would allow for plasma entrainment and heating of target mass at prolonged low dynamic pressure during outflow, where adiabatic expansion could deliver both semi-solid Muong Nong-type and inviscid melts above the atmosphere for gentle release upon rarefaction in vacuum. Within a large atmospheric blow-out scale momentum current, target mass becomes entrained at the speed of adiabatic outflow. 10+ km/s ejecta entrainment yields inter-hemispheric emplacement from launch per governing suborbital mechanics, without question. Oblique impact into a thick ice sheet explains reduced excavation volume and shearing disruption in the form of hypersonic steam plasma scouring. Adiabatic expansion would be immediately available to accelerate and further heat proto-tektite target mass. With shock no longer the sole transport engine, kg-scale splash forms and tektite speeds above the post-shock vaporization velocity of quartz are explained by expansion of shocked ice, in agreement with the observed imprint. The 6 Carolina bay shapes or “Davias Archetypes” are reproducible using conic perturbation in Suborbital Analysis, conforming to a formative mechanism of suborbital transport and ballistic emplacement: “Suborbital Obstruction Shadowing” needs only ~3 parts in 10,000 of VEL variation around a circular EL-AZ-VEL launch cone, before considering re-entry effects. Transport energy of the Carolina bay sand, calculated using the 3.5 to 4 km/s launch VEL required for its indicated transport, must account for inefficiency of entrained transport. Roughly 1600 cubic kilometers of Carolina bays sand must have taken 10 to 1000 times more energy to transport than the entire Chixulub event yield. Imagery by M. E. Davias of Cintos.org, S.E. Nebraska (top) and Bennettsville, South Carolina (bottom).

Stacks Image 8
Please reference our 2017 AGU abstract entitled Correlating Distal, Medial and Proximal Ejecta Transport/Emplacement From Oblique Cosmic Impact On North American Continental Ice Sheet At MIS20 (~786 ka) Via Suborbital Analysis (SA).